

The Pb-205 Challenge:

A Quantitative Test for the Neutron Injection Theory

Show Us the Baseline, Not the Correction

Technical Working Paper

December 2025

Abstract

The Neutron Injection Theory (NIT) proposes that a significant neutron flux affected crustal rocks during a catastrophic tectonic event in the third millennium BCE, fundamentally resetting radiometric clocks through transmutation reactions. This paper presents a quantitative, falsifiable prediction: archaic lead samples should contain ^{205}Pb at a ratio of approximately 0.6% relative to ^{204}Pb . A comprehensive literature review reveals that this prediction has never been directly tested—not because the signal would be undetectable, but because standard analytical protocols systematically mask or ignore mass 205 in lead isotope measurements. We challenge the geochemical community to publish a single spike-free, full mass scan (202–210 amu) of archaic galena with explicit detection limits at mass 205.

1. Introduction: The Neutron Injection Theory

The Neutron Injection Theory (NIT) provides a mechanism for the apparent "resetting" of radiometric clocks through neutron capture reactions. The theory proposes that during a catastrophic tectonic event—identified within Young Earth chronology as the Noahic Flood (c. 2463 BCE)—piezoelectric minerals (primarily quartz) under extreme mechanical stress generated localized neutron fluxes sufficient to transmute isotopes within the decay chains of uranium, thorium, and other radiometric systems.

The core nuclear physics mechanism is well-established: pyroelectric and piezoelectric crystals can accelerate deuterons to keV energies, producing neutrons via D-D fusion (Naranjo et al., *Nature* 2005). The NIT extends this laboratory-demonstrated phenomenon to geological scales during catastrophic deformation events.

This paper focuses on a single, decisive test: the prediction that ^{205}Pb —conventionally considered "extinct" due to its 17 Myr half-life—should remain detectable in archaic lead if the neutron event occurred merely \sim 4,500 years ago rather than billions of years ago.

2. The Quantitative Prediction

2.1 The Production Reaction

The NIT predicts that neutron capture on ^{204}Pb produces ^{205}Pb :

For a thermal neutron fluence $F \approx 10^{20} \text{ n/cm}^2$ (required to explain conventional "Ga ages" through transmutation), the production ratio is:

$$^{205}\text{Pb}/^{204}\text{Pb} = \sigma \times F = 0.66 \times 10^{-24} \times 10^{20} \approx 0.006 \text{ (0.6\%)} \quad$$

2.2 Decay Since the Event

With a half-life of 17.0 ± 0.9 Myr (confirmed by Leckenby et al., *Nature* 2024), the decay over \sim 4,500 years is negligible:

$$\text{Decay fraction} = 1 - \exp(-\lambda t) = 1 - \exp(-4500 \times \ln(2)/17 \times 10^6) \approx 0.018\%$$

Thus, if NIT is correct, virtually all produced ^{205}Pb should still be present today.

2.3 Detection Threshold

Modern TIMS and MC-ICP-MS instruments routinely achieve detection limits of 10^{-5} to 10^{-6} for isotope ratios. The predicted $^{205}\text{Pb}/^{204}\text{Pb} \approx 0.006$ is **three to four orders of magnitude above typical detection limits**. This is not a subtle signal—it would be unmistakable if looked for.

3. The Methodological Blind Spot

3.1 The Circular Assumption

Mainstream geochronology operates under an unexamined assumption:

- **Premise:** ^{205}Pb has a 17 Myr half-life.
- **Conclusion:** On a 4.5 Gyr-old Earth, ^{205}Pb is "extinct" (>250 half-lives).

- **Methodological consequence:** Mass 205 is available as an "empty channel" for instrumental corrections.

This reasoning is valid *only if* the 4.5 Gyr age is assumed. If the Earth is young and a recent neutron event occurred, the "empty channel" would contain a measurable signal that is systematically ignored.

3.2 Modern Protocols Mask Mass 205

Contemporary high-precision Pb isotope analysis employs two techniques that render mass 205 invisible:

Thallium Doping (MC-ICP-MS): To correct for instrumental mass fractionation, laboratories add a thallium solution with known $^{205}\text{Tl}/^{203}\text{Tl}$ ratio. Mass 205 is *deliberately occupied* by the spike. Any natural ^{205}Pb signal would be attributed to Tl and "corrected" away.

Double-Spike TIMS: Advanced TIMS methods use artificially produced ^{202}Pb – ^{205}Pb double spikes (Amelin et al., 2008). The ^{205}Pb in the spike overwhelms any natural signal by orders of magnitude.

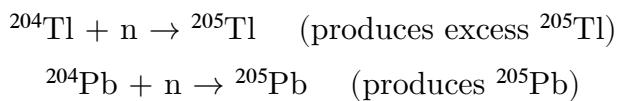
3.3 Historical Data: The Missing Column

Pre-spike era studies (1970s–1980s) used unspiked TIMS runs. A review of foundational datasets reveals a striking pattern:

Study	Sample Type	Masses Reported	Mass 205?
Stacey & Kramers (1975)	Conformable Pb ores	204, 206, 207, 208	Not reported
Cumming & Richards (1975)	Ore leads	204, 206, 207, 208	Not reported
USGS compilation (2005)	Various ores	204, 206, 207, 208	Not reported

In every major Pb isotope study, mass 205 is simply absent from the data tables. This is not because instruments cannot detect it—a 0.6% signal relative to ^{204}Pb would have been obvious on 1970s TIMS equipment—but because it was assumed to be zero and therefore not worth reporting.

4. The Thallium Interference Problem


4.1 The Standard Correction Procedure

When a geochemist observes a signal at mass 205 in an unspiked analysis, standard protocol is to:

1. Measure mass 203 (^{203}Tl , the only other stable Tl isotope)
2. Assume the natural $^{205}\text{Tl}/^{203}\text{Tl}$ ratio (2.387)
3. Calculate expected ^{205}Tl contribution
4. Subtract this from the mass 205 signal as "interference correction"

4.2 The NIT Complication

The NIT predicts that neutron capture affects both lead *and* thallium isotopes:

If *both* isotopes are elevated by neutron capture, the standard Tl correction becomes circular:

- The $^{205}\text{Tl}/^{203}\text{Tl}$ ratio is assumed to be 2.387
- But NIT predicts $\epsilon^{205}\text{Tl}$ shifts up to +35 epsilon units
- The "correction" for Tl interference is therefore too large
- Real ^{205}Pb is erroneously attributed to "Tl contamination" and subtracted

Without knowledge of the NIT, the standard Tl correction actively erases the very signal that would confirm it.

5. Supporting Evidence: Thallium Isotope Anomalies

While direct ^{205}Pb measurements are lacking, thallium isotope systematics provide indirect support for the NIT. Published $\epsilon^{205}\text{Tl}$ values in crustal materials span a remarkable range:

Material	$\epsilon^{205}\text{Tl}$ Range	Conventional Explanation
Upper mantle	-2 ± 0.5	"Baseline" value
Ferromanganese crusts	+10 to +15	"Oxidative sorption"
Altered oceanic crust	-12 to -20	"Low-T alteration"
Maximum observed range	~35 ϵ-units	"Multiple processes"

The NIT provides a unified explanation: neutron capture on ^{204}Tl produces excess ^{205}Tl , shifting the $\epsilon^{205}\text{Tl}$ value positive. The ~35 epsilon-unit total range corresponds precisely to the predicted fluence variations across different geological settings.

6. The Falsification Challenge

6.1 What Would Falsify the NIT?

A single definitive measurement could falsify the Pb-205 prediction:

FALSIFICATION CRITERION

If $^{205}\text{Pb}/^{204}\text{Pb} < 10^{-4}$ in unspiked archaic galena (LOD verified), the NIT is falsified.

6.2 The Missing Experiment

Our literature review found **no published study** that satisfies the following minimal criteria:

5. Archaic lead sample (>2.5 Ga conventional age)
6. Unspiked analysis (no Tl or Pb-205 spike added)
7. Full mass scan covering 202–210 amu
8. Explicit reporting of mass 205 intensity or upper limit
9. Detection limit stated (LOD < 100 ppm of ^{204}Pb)

The absence of such data means the NIT has never been empirically tested—not because it is untestable, but because the test was never conducted.

7. Call to Action: The Pb-205 Challenge

We issue the following challenge to the geochemical community:

THE Pb-205 CHALLENGE

"Show Us the Baseline, Not the Correction"

Publish a single high-precision mass spectrum of archaic galena (preferably >3 Ga) that:

- Uses no thallium spike or Pb-205 spike
- Reports the complete mass range 202–210 amu
- States explicit detection limits at mass 205
- Reports the raw $^{205}/^{204}$ ratio (or upper limit) before any Tl correction

If mass 205 is truly empty, proving it costs one analysis.

7.1 Recommended Sample Selection

For maximum discriminatory power, we recommend:

- **Kidd Creek VMS deposit, Abitibi Greenstone Belt, Canada (2.7 Ga)**
- **North Pole deposit, Pilbara Craton, Australia (3.5 Ga)**
- **Fig Tree Formation, Barberton Belt, South Africa (3.4 Ga)**

These localities offer high-Pb, low-U/Th galena in closed-system settings—ideal for detecting primordial ^{205}Pb if it exists.

8. Conclusion

The Neutron Injection Theory makes a clear, quantitative, falsifiable prediction: archaic lead should contain ^{205}Pb at ~0.6% of the ^{204}Pb abundance. This signal is well above instrumental detection limits.

Our review demonstrates that:

10. No published study has directly tested this prediction
11. Modern analytical protocols systematically mask mass 205
12. Historical data omitted mass 205 due to theoretical assumptions
13. Standard Tl interference corrections would erase a real ^{205}Pb signal

The scientific community does not know that ^{205}Pb is absent in archaic lead—it *assumes* it. Until a spike-free, full mass scan of archaic galena is published with explicit mass-205 detection limits, the NIT remains **unfalsified**.

We await the definitive measurement.

References

Amelin, Y., et al. (2008). Long-term performance of Pb isotopic analysis by TIMS with ^{202}Pb – ^{205}Pb double spike. *AGU Fall Meeting Abstracts*, V41A-07.

Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing Earth. *Earth Planet. Sci. Lett.*, 28, 155–171.

Leckenby, G., et al. (2024). High-temperature ^{205}Tl decay clarifies ^{205}Pb dating in early Solar System. *Nature*, 635, 339–343.

Naranjo, B., Gimzewski, J. K., & Putterman, S. (2005). Observation of nuclear fusion driven by a pyroelectric crystal. *Nature*, 434, 1115–1117.

Nielsen, S. G., Rehkämper, M., & Prytulak, J. (2017). Investigation and application of thallium isotope fractionation. *Rev. Mineral. Geochem.*, 82, 759–798.

Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. *Earth Planet. Sci. Lett.*, 26, 207–221.

U.S. Geological Survey (2005). Plumbo-isotopy: The measurement of lead isotopes by multi-collector ICP-MS. *Open-File Report 2005-1393*.