C14-Calc YE v3.0 FINAL

Kalibrierungs-Tool mit Young Earth Flood Model

Online verfügbar: https://www.bibelgriechisch.online/c-14/index.php

Version 3.0 FINAL | Stand: Januar 2025

Inhaltsverzeichnis

- 1. Deutsche Version
- 2. Das Young Earth Flood Model
- <u>3. Das bemerkenswerte Ergebnis</u>
- 4. Praktische Anwendung
- 5. Welche Probleme löst das Tool?
- <u>6. Beispiel-Workflow</u>
- 7. Vergleich Mainstream vs. YE
- 8. Häufige Fragen
- <u>9. English Version</u>

Deutsche Version

Einleitung

Das **C14-Calc YE v3.0** ist ein spezialisiertes Radiocarbon-Datierungstool, das auf dem **Young Earth Flood Model** basiert. Es bietet eine alternative Interpretation von Radiocarbon-Daten unter der Annahme einer globalen Flut und deren Auswirkungen auf das Erdmagnetfeld sowie die atmosphärische C-14-Produktion.

Das Tool ermöglicht die Kalibrierung von BP-Werten (Before Present) unter Berücksichtigung dreier geologischer Phasen: **PRE** (vor der Flut), **DURING** (während der Flut) und **POST** (nach der Flut).

Das Young Earth Flood Model (YE-Modell)

Das YE-Modell geht von folgenden Grundannahmen aus:

PRE - Vor der Flut

Zeitraum: Vor ca. 2463 v. Chr.

Charakteristika:

- Das Erdmagnetfeld war extrem stark und stabil
- Kosmische Strahlung wurde nahezu vollständig abgeschirmt
- In der Atmosphäre konnte kein nennenswertes ¹⁴C entstehen
- Pflanzen und Tiere enthielten praktisch 0% ¹⁴C
- Nur minimale Reste messbar: ca. 0.1–0.3% pMC

Kennzeichen:

- Starke Magnetfeldabschirmung
- Kaum ¹⁴C-Produktion
- pMC ≤ 0.30%

Interpretation: Organisches Material aus dieser Zeit zeigt extrem geringe C-14-Werte, die konventionell als "extrem alt" (>40.000 BP) interpretiert werden.

DURING – Während der Flut

Zeitraum: Um 2463 v. Chr. (Übergangsfenster)

Charakteristika:

- Globale Katastrophe mit Zusammenbruch des Erdmagnetfelds
- Atmosphäre durch Wasserdampf, Staub und Vulkanaerosole abgeschirmt
- Kohlenstoffkreislauf kollabiert
- ¹⁴C beginnt sich langsam neu zu bilden
- Atmosphärischer Austausch stark gestört

Kennzeichen:

- Magnetfeld instabil
- Gestörter Strahlungsfluss
- Schwankende ¹⁴C-Bildung
- pMC 0.30–0.50%

Interpretation: Material aus dieser Übergangsphase zeigt noch sehr geringe, aber ansteigende pMC-Werte.

POST – Nach der Flut

Zeitraum: Ab ca. 2463 v. Chr. bis heute

Phase 1: YE-Aufbau (0.50% < pMC < 72.06%)

Charakteristika:

- Erdmagnetfeld baut sich wieder auf, bleibt aber über Jahrhunderte schwach
- Wesentlich mehr kosmische Strahlung dringt in die Atmosphäre
- ¹⁴C-Produktion steigt stark an
- Young-Earth-Aufbaukurve: exponentieller Anstieg des atmosphärischen ¹⁴C
- Allmähliche Annäherung an den heutigen IntCal-Wert

Kennzeichen:

- Schwaches Magnetfeld
- Hohe ¹⁴C-Produktion
- pMC 0.50–72.06%

Besonderheit: Das Tool berechnet für diesen Bereich konkrete Kalenderjahre basierend auf dem YE-Modell. Die Spline-Interpolation nutzt historische Ankerpunkte für präzisere Datierung.

Phase 2: IntCal-Bereich (pMC ≥ 72.06%)

Ab etwa 72% pMC ist der heutige "Mainstream"-Kalibrierbereich erreicht. Hier stimmt das YE-Modell weitgehend mit der konventionellen IntCal-Kalibrierung überein.

Das bemerkenswerte Ergebnis

Das YE-Modell konvergiert exakt zum biblischen Flutdatum von 2463 v. Chr.

Dieses Datum ergibt sich nicht durch Vorgabe, sondern durch:

- Die gemessenen Floor-Werte (RATE/ARJ)
- Die empirisch ermittelte Buildup-Rate (Jordan)
- Die IntCal-Sättigung bei 72.06% pMC
- Die mathematische Modellierung des Aufbaus

Die Übereinstimmung mit der biblischen Chronologie (nach Liebi) ist das zentrale Ergebnis dieses Kalibrierungsansatzes.

Wissenschaftliche Grundlage

Das Tool basiert auf folgenden wissenschaftlichen Quellen:

- 1. **RATE/ARJ-Projekt:** Floor-Wert $C_0 = 0.292\%$ pMC
- 2. **Jordan 2020:** Buildup-Rate $k = 0.0025358 \text{ a}^{-1}$ (entspricht $1/k \approx 394 \text{ Jahre}$)
- 3. **IntCal20:** Sättigungswert S = 72.05684137% pMC
- 4. Liebi-Chronologie: Flutjahr 2463 v. Chr.

Praktische Anwendung des Tools

1. Proben finden und formatieren

Beispiel-Quellen für C-14-Daten:

- Wissenschaftliche Publikationen (z.B. Radiocarbon Journal)
- Online-Datenbanken (z.B. CARD Canadian Archaeological Radiocarbon Database)
- Geologische und archäologische Berichte
- IntCal-Datensätze

Typisches Format in der Literatur:

```
Sample ID: Beta-123456
Material: charcoal
14C Age: 4550 ± 50 BP
```

Konvertierung ins Tool-Format:

Das Tool benötigt: ID, BP, Sigma, Material (eine Probe pro Zeile)

```
Beta-123456, 4550, 50, charcoal
```

2. Mit KI beim Formatieren helfen lassen

Sie können ChatGPT, Claude oder andere KI-Assistenten nutzen:

Prompt-Beispiel:

```
Ich habe folgende C-14-Daten aus einem Paper:
[Daten hier einfügen]
```

Bitte formatiere diese Daten im Format: ID,BP,Sigma,Material Eine Zeile pro Probe. Kommentare mit # beginnen.

Die KI extrahiert automatisch:

- Sample-IDs
- BP-Werte
- Sigma-Unsicherheiten
- Materialkategorien

3. Batch-Verarbeitung im Tool

- 1. Daten in das Batch-Tab eingeben oder CSV hochladen
- 2. "Alle berechnen" klicken
- 3. Ergebnisse werden automatisch in die drei Phasen klassifiziert:
 - PRE/FLOOR (≤ 0.30% pMC)
 - DURING/FLOOD (0.30–0.50% pMC)
 - POST/YE (0.50–72.06% pMC)
 - o POST/INTCAL (≥ 72.06% pMC)
- 4. Visualisierungen erstellen:
 - Punktewolke (BP vs. pMC)
 - o Timeline mit Phasen-Markierungen
- 5. Ergebnisse exportieren als CSV

Welche Probleme löst das Tool?

1. Alternative Interpretation sehr alter Proben

Problem: Konventionelle Datierung gibt >40.000 Jahre BP an.

YE-Lösung: Diese Proben fallen in die PRE-Phase (vor der Flut) und zeigen nur geringe pMC-Werte aufgrund der starken Magnetfeldabschirmung.

Beispiel:

Floor-1,48129,500,charcoal

→ Ergebnis: PRE/FLOOR - "vor Flut (breites Fenster)"

2. Eiszeit-Chronologie

Problem: Last Glacial Maximum (LGM) mit ~21.000 BP passt nicht in eine kurze Erdgeschichte.

YE-Lösung: LGM fällt in die POST/YE-Phase und wird auf wenige Jahrtausende nach der Flut datiert.

Beispiel:

```
LGM-Peak, 21000, 200, sediment BA-Onset, 14700, 150, charcoal YD-End, 11700, 100, peat
```

→ Ergebnis: Alle POST/YE - berechnet auf ca. 1000–2000 Jahre nach der Flut

3. Archäologische Fundkomplexe (z.B. Ötzi)

Problem: Ötzi wird konventionell auf ca. 3300 v. Chr. datiert (~4550 BP).

YE-Lösung: Mit pMC ~56.7% fällt Ötzi klar in die POST/YE-Phase.

Beispiel:

```
Oetzi-Tissue, 4550, 50, human_tissue
Oetzi-Bone, 4560, 65, human_bone
```

 \rightarrow Ergebnis: POST/YE - datiert auf ca. 1800–1900 v. Chr. (YE-Modell)

4. Konsistenz-Checks bei Multi-Sample-Datierung

Das Tool zeigt sofort:

- Welche Proben zusammen passen (gleiche Phase)
- Welche Ausreißer vorliegen
- Ob Material aus verschiedenen Phasen vermischt wurde

Beispiel-Workflow: Archäologische Fundstelle

Szenario: Sie haben eine Fundstelle mit mehreren C-14-Proben aus einem wissenschaftlichen Paper.

Schritt 1: Daten sammeln

Paper enthält:

```
Table 2: Radiocarbon dates from Site XY
                               <sup>1</sup> <sup>4</sup>C Age BP
                Material
Lab ID
Beta-401123
                charcoal
                               4520
                                                45
                                                55
Beta-401124
               bone
                               4580
Beta-401125
                wood
                               4495
                                                50
Poz-89234
                               4530
                                                40
                seed
```

Schritt 2: Mit KI formatieren

KI-Ausgabe:

```
# Site XY - Excavation 2023
Beta-401123,4520,45,charcoal
Beta-401124,4580,55,bone
Beta-401125,4495,50,wood
Poz-89234,4530,40,seed
```

Schritt 3: In Tool eingeben

→ Batch-Tab → Daten einfügen → "Alle berechnen"

Schritt 4: Ergebnisse interpretieren

Alle Proben zeigen:

- pMC ~56-57%
- Phase: POST/YE
- Kalenderjahr: ~1850–1900 v. Chr. (YE-Modell)
- Mainstream: ~2500 v. Chr.

Interpretation: Die Fundstelle ist einheitlich und konsistent. Alle Proben fallen in die gleiche Phase nach der Flut.

Schritt 5: Visualisierung

- Punktewolke zeigt enge Gruppierung
- Timeline bestätigt POST/YE-Phase
- Export als PNG für Präsentation

Vergleich: Mainstream vs. YE-Modell

Probe	ВР	pMC (%)	Mainstream	YE- Modell	Phase
Ötzi	4550	56.7	3300 v. Chr.	~1850 v. Chr.	POST/YE
LGM	21000	7.7	19050 v. Chr.	~1500 v. Chr.	POST/YE
Dinosaurier	48000	0.25	>40000 v. Chr.	vor Flut	PRE/FLOOR
Moderner Baum	100	98.8	1850 n. Chr.	1850 n. Chr.	POST/INTCAL

Häufige Fragen (FAQ)

Q: Warum unterscheiden sich YE- und Mainstream-Datierung? **A:** Das YE-Modell berücksichtigt eine dramatische Änderung des Erdmagnetfelds und der atmosphärischen ¹⁴C-Konzentration während und nach der Flut. Konventionelle Datierung geht von konstanten Bedingungen aus.

O: Ist das wissenschaftlich anerkannt?

A: Das YE-Modell ist eine Minderheitsposition in der Wissenschaft. Es wird hauptsächlich im Rahmen der Creation Science diskutiert und basiert auf den RATE/ARJ-Projekten.

Q: Kann ich das Tool für wissenschaftliche Publikationen nutzen?

A: Das Tool bietet eine alternative Interpretation. Für Mainstream-Publikationen sollten Sie zusätzlich konventionelle Kalibrierungstools (OxCal, Calib) verwenden und beide Ansätze diskutieren.

Q: Wie genau ist die Spline-Interpolation?

A: Die Spline-Interpolation nutzt historische Ankerpunkte und das YE-Modell. Die Genauigkeit hängt von der Dichte der Ankerpunkte ab. Im Admin-Tab können eigene Anker hinzugefügt werden.

Technische Features

- Sinzelproben-Kalibrierung mit sofortiger Phasen-Zuordnung
- ✓ Batch-Verarbeitung für große Datensätze
- ✓ CSV-Import/Export für einfache Datenverwaltung
- Visualisierungen (Punktewolke, Timeline)
- **⊘ PNG-Download** für Präsentationen
- ✓ Admin-Panel zur Anpassung von Parametern
- **⊘ Test-Suite** zur Validierung der Phasen-Grenzen
- Spline-Interpolation mit konfigurierbaren Ankerpunkten

English Version

Introduction

C14-Calc YE v3.0 is a specialized radiocarbon dating tool based on the **Young Earth Flood Model**. It provides an alternative interpretation of radiocarbon data, assuming a global flood and its effects on Earth's magnetic field and atmospheric ¹⁴C production.

The tool enables calibration of BP values (Before Present) considering three geological phases: **PRE** (before the Flood), **DURING** (during the Flood), and **POST** (after the Flood).

The Young Earth Flood Model (YE Model)

PRE - Before the Flood

Time Period: Before ca. 2463 BC

Characteristics:

- Earth's magnetic field was extremely strong and stable
- Cosmic radiation was almost completely shielded
- Virtually no ¹⁴C could form in the atmosphere
- Plants and animals contained practically 0% ¹⁴C
- Only minimal traces measurable: ca. 0.1–0.3% pMC

Key Features:

- · Strong magnetic field shielding
- Virtually no ¹⁴C production
- pMC ≤ 0.30%

DURING – During the Flood

Time Period: Around 2463 BC (transition window)

Characteristics:

- Global catastrophe with partial collapse of Earth's magnetic field
- Atmosphere shielded by water vapor, dust, and volcanic aerosols
- Carbon cycle collapsed
- ¹⁴C begins to form slowly
- Atmospheric exchange severely disrupted

POST – After the Flood

Time Period: From ca. 2463 BC to present

Phase 1: YE Buildup (0.50% < pMC < 72.06%)

Characteristics:

- Magnetic field rebuilds but remains weak for centuries
- Significantly more cosmic radiation penetrates the atmosphere
- ¹⁴C production increases strongly
- Young-Earth buildup curve: exponential rise in atmospheric
 14C
- Gradual approach to today's IntCal value

The Remarkable Result

The YE model converges exactly to the biblical Flood date of 2463 BC.

This date is not preset but emerges from:

- Measured floor values (RATE/ARJ)
- Empirically determined buildup rate (Jordan)
- IntCal saturation at 72.06% pMC
- Mathematical modeling of the buildup

The agreement with biblical chronology (according to Liebi) is the central result of this calibration approach.

Comparison: Mainstream vs. YE Model

Sample	ВР	pMC (%)	Mainstream	YE Model	Phase
Ötzi	4550	56.7	3300 BC	~1850 BC	POST/YE
LGM	21000	7.7	19050 BC	~1500 BC	POST/YE
Dinosaur	48000	0.25	>40000 BC	before Flood	PRE/FLOOR
Modern tree	100	98.8	1850 AD	1850 AD	POST/INTCAL

Quick Start Guide

For Beginners:

- 1. **Go to:** https://www.bibelgriechisch.online/c-14/index.php
- 2. Tab "Einzelprobe" / "Single Sample": Enter one sample

- 3. Enter BP value and sigma
- 4. Click "Calculate" / "Berechnen"
- 5. View result with phase classification

For Advanced Users:

- 1. Collect C-14 data from publications
- 2. **Use AI** to format data (prompt provided in German section)
- 3. Batch Tab: Paste all samples
- 4. Calculate All: Automatic phase classification
- 5. Visualize: Create point cloud and timeline
- 6. Export: Download results as CSV and PNG

C14-Calc YE v3.0 FINAL | Version 3.0 | Stand: Januar 2025

Online: https://www.bibelgriechisch.online/c-14/index.php

Kontakt: Streitenberger_Peter@yahoo.de | bibelgriechisch.online

Quellen: RATE/ARJ (C_0 =0.292%), Jordan 2020 (k=0.0025358), IntCal20 (S=72.05684137%), Liebi (Flutjahr 2463 v. Chr.)